
Fast, Flexible (and Inefficient?) Message
Parsing

Randolph M. Jones
Soar Technology, Inc.

rjones@soartech.com

Soar Workshop, June 2005

June 2005 | © 2005 Soar Technology, Inc. | Slide 2

Challenges

We see increasing demand for interactive intelligent
agents that can interact via speech
We do not have the time or expertise to do full
natural language processing
Neither do our agents
Agent message processing must be as rich, fast, and
flexible as we can make it
• And it would be nice if the code doesn’t become a mess

June 2005 | © 2005 Soar Technology, Inc. | Slide 3

Background: Message processing in TacAir-Soar

Template-oriented productions that match against a
linear, linked list of message tokens

sp "top-ps*persistent*section*tactical*wing-has-the-lead
:o-support
(state <s> ^problem-space.name top-ps

^operator <o>
^call-sign <my-cs>
^command.primary-group <pg>
^comm.message <m>)

(<m> ^content <list0> -^processed ^accept *yes*)
(<pg> ^mission.partner.call-sign { <partner-cs> <> <my-cs> }

^tactical <st>
-^type vehicle)

(<st> ^role lead)
[soarList <partner-cs> i have the lead]

-->
(write (crlf) |Wing confirmed taking over as lead|)
(<st> ^role lead - subordinate +)
(<m> ^processed *yes*)
"

(<list0> ^item <partner-cs> ^next
<list1>)
(<list1> ^item i ^next <list2>)
(<list2> ^item have ^next <list3>)
(<list3> ^item the ^next <list4>)
(<list4> ^item lead)

June 2005 | © 2005 Soar Technology, Inc. | Slide 4

Problems with templates

Mapping m different templates for a family of
messages with n different supplemental conditions
can lead to mxn productions
• We can address this in part by building intermediate semantic

representations of the messages

For generality messages can contain numerous
variables, but that can lead to problems of ambiguity
• Extreme example from actual TacAir-Soar code:

• [soarList <x0> <x1> <x2> <x3> <x4> <x5> <x6> <x7> <x8>]

Templates assume that each message will be received
at once and in its entirety

June 2005 | © 2005 Soar Technology, Inc. | Slide 5

Resolving ambiguity

In TacAir-Soar, we decided to do a small amount of
data-driven tagging in order to resolve such
ambiguities

[soarList <x0> <x1> <x2> <x3> <x4> <x5> <x6> <x7> <x8>]
(<list0> ^integer *yes*)
(<list1> ^integer *yes*)
(<list2> ^uppercase-alpha *yes*)
(<list3> ^uppercase-alpha *yes*)
(<list4> ^uppercase-alpha *yes*)
(<list5> ^integer *yes*)
(<list6> ^integer *yes*)
(<list7> ^integer *yes*)
(<list8> ^integer *yes*)

sp {top-ps*persistent*comm*examine-current-
item

(state <s> ^problem-space.name top-ps
^operator.name
^comm.message <msg>)

(<msg> ^message-item <ptr>)
(<ptr> ^item <item>)

-->
(<ptr> ^integer (integerp <item>)

^number (numberp <item>)
^literal (literalp <item>))

}

June 2005 | © 2005 Soar Technology, Inc. | Slide 6

Generalizing the approach

Data-driven tagging can be used to create a hierarchy
of interpretations of the input stream of tokens

1 2 point 3 4 5

Digit-string Digit-stringDecimal point

Integer Integer

Floating-point

Start End

June 2005 | © 2005 Soar Technology, Inc. | Slide 7

Example parsing production

sp "top-ps*elaborate*parsing*channel*parse-element*parse*mgrs
(state <s> ^problem-space.name top-ps

^comm.parsing.channel <pc>)
[soarParseList {^type digit-string ^length << 1 2 >> ^value <zone-number>} \

{^type single-letter ^value <zone-letter>} \
{^type single-letter ^value <id-letter1>} \
{^type single-letter ^value <id-letter2>} \
{^type digit-string ^string-value <coords>}]

-->
…

June 2005 | © 2005 Soar Technology, Inc. | Slide 8

Comments on the approach

Quick (but hopefully not dirty) solution to an urgent
problem
• Need to look to things like NL-Soar for improvements and

lessons

Focus on creating a manageable, reusable module
• Use elaborations as much as possible
• Make sure operators are Soar7- and Soar8-friendly
• Use TCL templates to allow variations in primitive

representation of token streams

June 2005 | © 2005 Soar Technology, Inc. | Slide 9

Advantages

Allows flexible translation of a variety of syntaxes
into hierarchical layers of interpretation
Generalizes the notion of a “token”, allowing more
flexibility in the lengths of messages
• Also makes it easier to handle individual linked lists that

represent only a fragment of a message or contain multiple
messages

Works very naturally within Soar’s elaboration cycle

June 2005 | © 2005 Soar Technology, Inc. | Slide 10

Potential disadvantages

Things can get expensive if you let them get out of
hand
• The nature of data-driven processes is that you lose the

advantage of top-down control to focus processing
• The first implementation reached max-elaborations a lot

• And it gets worse the longer the messages are and the more
parsing types you need

• However, Soar makes is possible to fold in context, goals,
and attention mechanisms

There are still potential problems with ambiguity
during parsing
• Can lead to an explosion of interpretation of the input
• Have to be careful about resolving messages where one

potential message is a prefix of another

	Fast, Flexible (and Inefficient?) Message Parsing
	Challenges
	Background: Message processing in TacAir-Soar
	Problems with templates
	Resolving ambiguity
	Generalizing the approach
	Example parsing production
	Comments on the approach
	Advantages
	Potential disadvantages

